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Research Summary

The primary objectives of the research are as follows:

1. Design, implement, test, and evaluate a prototype hierarchical architecture for cooperative UAV
control at the fleet, team, and individual UAV level,

2. Design, implement, test, and evaluate a market-based model for UAV team formation resource
allocation,

3. Design, implement, test, and evaluate closed form discrete optimization algorithms for resource
allocation in systems of UAVs.

Year 1

Four publications pertaining to the completion of the tasks required to achieve these objectives were
accomplished in year 1, included in previous annual reports, and are listed among the references. In
summary, with regard to objective 1, first, as reported in [Chandler et. al, 2002]and [Dargar et. al, 2002],
the hierarchical control structure was extensively developed and tested. The issue of correct classification
of targets was incorporated, along with closed form discrete optimization models and market-based
bidding models. The role of path planning for individual UAVs is directly incorporated into a lower level
in the hierarchy, and provides a source of information to support decision-making at higher levels. With
regard to objective 2, a market-based model was developed, tested, and reported in [Guo et. al., 2002].
The scheme is combinatorial, and captures complex complementarities and substitutability relationships
among tasks with a mediation scheme. The combinatorial approach is essential in situations with strong
dependencies among tasks exist, such as when multiple targets are in close proximity to one another.
Agent UAVs are allowed to sell and buy tasks simultaneously, and a trading mechanism that extends one-
side combinatorial auctions is employed. Finally, we developed an algorithm for efficiently generating
small subsets of feasible trades that are likely to be attractive. For objective 3, a dynamic network flow
optimization model for allocating UAVs resources was devised and is reported in [Nygard et. al., 2002].
This model captures distinct types of tasks, such as searching, classifying, striking, and assessing damage
to targets. By employing a fast network solver, the model is capable of near-real solutions, allowing
UAVs controlled by the model to adapt to changing conditions in the battlefield.

Year 2

In year two of the project, progress on objective I was made in several ways. First, as reported in
[Altenburg, et. al, 2002], an aspect of the framework that utilizes low-level emergent swarm intelligence
was developed. It was demonstrated that local behaviors governed by a state machine could execute a
structured global search strategy. Although biological swarms inspire the approach, the work establishes
that the behaviors can be specified in such a way that uncontrolled chaotic behavior is avoided. With
regard to objective 2, the market-based model was extended to directly address multiple task allocation
with subteam formation. [Guo et. al., 2002]. The combinatorics of the problem are dealt with by using an
up front heuristic depth-first search to generate promising tasks for each agent. This significantly
reduces the computational burden of the cost calculations, yet provides near-optimal allocations. There is
almost a complete lack of quantitative models that directly address subteam formation, so this aspect of
the market-based model significantly extends available methodologies that can be applied to highest end
of the control hierarchy for UAV mission control. Under objective 3, the dynamic network flow
optimization model reported in September of 2002 was used as the basis and direct competitor in a neuro-
dynamic programming approach to fast task allocation under dynamically changing battlefield conditions



(e.g., pop-up threats, opportunistic targets) [Anwar et. al., 2002]. In essence, a neural network is used as
an approximation of the cost-to-go function of dynamic programming, providing a very fast means of
generating high-performance task allocations on the fly. In addition, a more comprehensive integer
programming model was developed, for use in determining optimal roles for individual UAVs to play in
team-oriented missions [Hennebry et. al., 2004]. Although not usable for dynamic reallocations, the
model is expected to be useful in generating very high performance task allocations in situations where
the opportunities and threats are known somewhat in advance. The model is also useful as a benchmark
for the fast heuristic procedures under development.

Year 3

In the final year of the project, the reactive behavior approach was extended to support an asset patrolling
scenario and is attached to this paper and reported in [Nygard, 2004]. This is a continuation of the work
involved with completing objective 1. The work is inspired by the need for persistent patrolling
operations in recent conflicts of the world, including operations in Iraq. Also supporting objective 1, a
Partially-Observable Markovian Decision Process (POMDP) methodology was developed to explicitly
provide a modeling framework for choosing alternative available mission decisions under conditions of
incomplete information. This is reported in [Schesvold, 2003]. Finally, [Lundell 2005] reports on the use
of a promising alternative model for cooperative control based on Petri net modeling.

The project has involved over graduate students Kenneth Grigsby, Martin Lundell, Benzir Ahmed,
Wenge Guo, Haiyan Qaio, Md. Anwar, and Chin Lua. Reseasrch Associates Michael Hennebry, Doug
Schesvold, and Jingpeng Tang were supported. One graduate student supported spent the summer of
2002 at the Air Force Research Laboratory at Wright-Patterson AFB to help keep communication
ongoing with that group of scientists, and to help the project stay focused on the appropriate Air Force
needs. Dr. Nygard continues to build solid relationships with Air Force scientists and investigators such
as Dr. Siva Banda and Phillip Chandler at the Air Force Research Laboratories at Wright-Patterson Air
Force Base and visit AFRL laboratories to share results and continue collaborations.
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Fuzzy Petri Net for UAV Decision Making
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ABSTRACT 2. FUZZY PETRI NET.

The decision for an autonomous Unmanned Air Petri nets [1] are a graphical and mathematical
Vehicle (UAV) to strike a target is an important one modeling tool. They can be used as a communication
that has important consequences. The details tool similar to other modeling notations like state-
regarding the decision and the process of deciding transition diagrams and entity-relationship diagrams.
need to be well defined and understood This paper As a mathematical tool it can set up mathematical
presents a Petri net approach to UA V decision making models that govern the behavior of systems. Those
based on fuzzy reasoning. It shows that Petri nets are systems can be asynchronous, concurrent, parallel,
a viable toolfor modeling and validating propositional stochastic, or non-deterministic.
logic for rule-based reasoning in UA V decisions. It Using a Petri net formalism allows us two primary
also discusses alternative methods for modeling places advantages [3]. It allows us to visualize the structure of
as input sources for transitions representing rules. the rules-based system, making the model more legible

and easier to understand; and secondly to express the

KEYWORDS- Petri net, Fuzzy Reasoning, UA V, behavior of the system in mathematical forms.

control structure, modeling The term Fuzzy Petri Net (FPN) has been used to
describe Petri nets that use their formalism to
implement fuzzy reasoning algorithms. In FPNs,

1. INTRODUCTION. places can represent propositions, transitions can
represent rules, and tokens can represent truth values.

Unmanned Air Vehicles (UAVs) have been, and are In [3], the authors propose an extension called Fuzzy

currently, receiving much attention in research. To Reasoning Petri Nets (FRPNs) where the properties of
date, much of the practical applications of UAVs have the Petri net are further defined: 1) If a place represents
been for reconnaissance with their decision and control a truth degree, it can have, at most, one token. 2)
being handled remotely. Current research is FRPNs are conflict-free nets as rules may share
examining the possibilities of UAVs as autonomous propositions. 3) Tokens are not removed from the
agents working individually or collaboratively with input places after it fires. And 4) Complementary arcs
other autonomous UAVs [6][7][8]. One desirable do not inhibit the firing of a transition if its place has a
attribute for an autonomous UAV is the ability to token.
determine the value of an enemy target, the level of The remainder of this document is organized as
threat that target imposes, and whether or not it should follows. In section 3 we will define some variables
strike that target. One potential model that can be and concepts. In section 4 we will apply a fuzzy Petri
employed in the decision making process is that of net to a UAV decision making scenario. In section 5
fuzzy reasoning. we will discuss the implications of using fuzzy Petri

Since the information that a UAV can have about a nets in such rule based reasoning. Section 6 states the
target at any point in time may not be complete, the conclusions and section 7 lays out some future work.
UAV could use rules-based reasoning to compute the
confidence it has in several factors before making a
decision to strike or to search for a new target. 3. DEFINITIONS.

TGV be the linguistic variable for Target Value



representing a number in the range [0, 100]. practical application the military would decide the
"* Let THV be the linguistic variable for Threat membership function of their fuzzy sets.

Value representing a number in the range [0, 100].
"* Let FLV be the linguistic variable for Fuel Level

Value representing a number in the range [0, 1 ifv•30

100]. low~(v) ={1-(v-30)/20 if 3 0•!v•ý5 0"* Let RI, R2, ... Rn be n-rules that represent the -o2
fussy reasoning scenario. otherwise

In this paper we use Mamdani's fuzzy implication
operators for triangular norms and triangular conorms (2)
where,

minimum/maximum: moderate (v)= flo-V50h/20 if30_<v<70

MIN(a, b) = min{a, b}= a A b, (1) 0 otherwise

MAX(a, b) = max{a, b) = a v b (3)

4. FUZZY PETRI NET MODEL FOR I ifv Ž70

UAV. high(v):I{-i(v-30)/20 if 50< v< 70

In the following scenario we assume a UAV will be otherwise

using its sensors to determine a target value, the threat (4)
of a target, and its own fuel level. Each UAV is
terminal in the sense that it will search for a target and Target Value Membership Function

in the processing of striking a target, it too will be T V

destroyed. If it consumes all it's fuel before striking a 2

target, the UAV will crash. Thus, it is better that a - ------ -
UAV strike a target with a low value than none at all. 0. - 6

The following scenario is a simplified one to enhance a a0.4 -- -- , i-1ih

clarity of the process. There could be more properties 02

taken into account. For example, sensors could detect 0 10 20 30 40 60 60 70 80 90 100

radar or radio communications from a potential target Target Value

and use that information in its decision making process FIGURE Ia. Target Value Membership (TGV)
and others we will discuss shortly.

The process for implementing the scenario will be Threat Value Membership Function

A) fuzzification of input values, B) rule evaluation, C) 12
aggregation of rule outputs, and D) defuzzification I

-s-Low! ,ao.6 l-,-Mod
4.1 Fuzzification of input values. 5 A6 o -- ------

202

Crisp Input: 2 0

Let the TVG be 55. 0 10 20 30 40 60 60 70 80 90 10D

Let the THV be 40. Threet Value

Let the FLV be 80. FIGURE lb. Threat Value Membership (THV)

The following equations are used to determine the
degree of participation of a value in a fuzzy set. For
simplicity's sake, all three membership functions have
the same plotting values along the x axis and the same
fuzzy set allocation into high, moderate, and low. In a



FuelLevel Membership Function 4.3. Aggregation of rule outputs
1.2

0-8 In our scenario the consequent member function,

0\6 . \,> Decision, has two fuzzy sets: Search and Strike. This
S0.4 - .. is shown in fig 2.

*0,2 - In aggregating the rule outputs we again use
0 1Mamdani's implication operators, this time using the0 10 20 30 40 50 60 70 80 90 1W0

Fuel LevelValue max function to determine the maximum degree of
participation in each of the consequent fuzzy sets. In

FIGURE Ic. Fuel Level Membership (FLV) other words, we want the max value for Strike that was
Applying the cpinput value for TG to the output by all the rules where Strike was a consequent
Applyingipheucrisp where value get the fuzzy set and we want the max value for Search that

membership function where v=TGV, we get the values wsotu yalterlsweeSac a

for the TGV's participation in the low, moderate, and couent by set.

high fuzzy sets as low = 0, moderate = 0.75, and high consequent fuzzy set.

= 0.25. This is represented in fig. la. We proceed by D

applying the membership functions to the crisp values Ie$1on Membership F
for THV and FLV. For THV the participation in low
0.5, moderate = 0.5 and high = 0. This is represented r) Z 0.8

in fig. lb. For FLV the participation in low = 0, e- -o.6 , ---,---_--
moderate = 0, and high = 1. This is represented in fig. -- -----
Ic. 0

4.2. Rule evaluation. 0 1 2 4 0 2 7 87 910

Decision

We have identified the following rules for this FIGURE 2 Decision Membership
scenario:

4.4. Defuzzification
RI: If THV is high then strike target.

R2: If TGV is high then strike target. After finding the max value from all rule
R4: If TGV is moderate and THY is moderate and consequents for each fuzzy set we need to turn those
FLY If is moderatethen e tag ismoderatevalues into a crisp output value. We chose a centroid
R5: IF TGV is low and THY is low then continue technique that finds the center of gravity (COG) from

search. the aggregate fuzzy sets resulting from step 3 in fig 3.

R6: If TGV is moderate and THV is low and FLV The center of gravity can be expressed as:
is moderate then strike target.

R7: If TGV is low and THV is moderate and FLV is b

moderate then strike target.fJA(x)xdX
R8: If TGV is moderate and THV is moderate and COG a b

FLV is high then continue search. fu,, (x) dx
R9: If TGV is moderate and THV is low and FLV

is high then continue search. a

RIO: If TGV is low and THV is moderate and FLV (5)
is high then continue search. Using the data from our Petri net in fig. 3, our COG

= 3.83.

Using Mamdani's implication operators we take the
minimum truth value in a rule antecedent and apply (0++2+3)x0.5+(7+8+9+10)x0.25=3.83
that value as the degree of participation the consequent = 0.5+0.5+0.5+0.5+0(25+0.25+0.25+0.25
has in its fuzzy set. This is represented in step 2 of fig
3. The crisp output of 3.83 would indicate the UAV's
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decision to Search. place a new token in that place. This is significant if
there exists multiple reasoning sequences through this

5. DISCUSSION. net.
We propose that a separate place be generated for

5.1. On Petri Net Modeling every transition that will consume a given token. See
Fig. 4c. Each place would then have one outgoing arc

Using the FRPN model proposed in [3], the tokens to its corresponding rule. This preserves the
in places do not get consumed after a token (truth parallelism of the net and also resolves the conflict
value) is used in a transition (rule). The authors in [3] issue mentioned earlier. It also holds to more of the
argue that a conflict would arise if the truth value were traditional rules of Petri nets. One downside to this
to be removed (i.e. other rules would not be able method is a proliferation of places with the same value.
access the truth value). In [9] the author suggests a This may make the Petri Net more difficult to read.
return arc to put the token back in it's originating place The net structure in fig. 4d would allow for
after the transition fires. This is diagrammed in fig 4a. comparison of values from one iteration of the
As noted in [3], this solves the conflict problem but reasoning sequence to the next. Consider the
weakens the parallelism of the Petri net. following expansion of the UAV Scenario. A new

input value of "distance to the target" is added to the
equation. This would allow for a third fuzzy set to be
added to the consequent member function "Decision".
Let the this new fuzzy set be described as "Continue
Evaluation". Rules that could be added may look like
this:

RI: If distance is high continue evaluation.
R2: If distance is moderate and threat is high strike

(a) (b) target.
R3: If distance is low and target value is low and

fuel level is moderate continue search.

Under these circumstances we may want to
determine whether a target value was increasing or
decreasing as we approached the target, and apply
rules based on this information. We may do repeated
evaluations of the same target (if we had not chosen to

S1 strike the target immediately). It would be valuable to
have the truth values consumed by rules and have the
arc be disabled until the next sensor reading is

(c) (d) fuzzified. Since it is apparent that comparing new
truth values to previous ones may be beneficial, the

FIGURE 4. Net Structure structure in fig. 4d would place the previous truth
value in a separate place, and consume it a second time

In [3] the authors propose the solution in fig. 4b for comparison to the newly generated truth value.
where the token is used but is assumed to not be
consumed. While this solves the conflict issue and 5.2. On the UAV Petri Net process
allows for parallel firing of transitions it poses other
problems. This assumption, if not clearly stated, It is vital that all possible paths in a fuzzy reasoning
makes it easy to misinterpret the Petri net. Also, if the tree are realized in a decision making model for UAV
token is not consumed, and the place is assumed to target strikes. Using a fuzzy Petri net allows us to
hold a single token representing the participation in a validate all paths. It also allows us to validate our
fuzzy set, the source transition would not be able to fuzzy reasoning rules. We can provide sample crisp



input and traverse our Petri Net, realizing each rule and antecedent of another rule and applying hierarchical
producing a final, defuzzified output. This output can fuzzy Petri nets to that scenario.
be evaluated against expected decisions. Autonomous
UAV's that rely on pre-flight and/or sensory
information to make decisions are a type of knowledge REFERENCES
based system. Modeling this system as a FPN allows
us to detect inconsistencies in the system. [1] Murata, T., "Petri Nets: Properties, Analysis and
Inconsistencies exist where there are conflicting, dead- Applications." Proceedings of the IEEE., Vol. 77, No. 4,
end, or redundant if condition rules[2]. The process of April 1989.
modeling these rules in a Petri net formalism allows usmodealidate these rules infoPetri coetes, for elism wsus [2] Koriem, S. M., "A Fuzzy Petri Net Tool for Modeling
to validate those rules for completeness, preciseness and Verification of Knowledge-Based Systems," Comput. J.,
and consistency. vol. 43, no. 3, pp. 206-223, 2000.

The development of fuzzy reasoning rules for
implementation in software is an exercise in [3] Gao, M., M. Zhou, X. Huang, Z. Wu, "Fuzzy Reasoning
requirements engineering. Revealing inconsistencies Petri Nets", IEEE Trans. On Systems Man and Cybernetics-

in rules early in the development of a system allows Part A: Systems and Humans, Vol. 33, No. 3, May 2003, pp.

for savings in development time and overall project 314-324.

cost. Complete and consistent rules that have been [4] Gao, M., M.Zhou, Y.Tang, "Intelligent Decision Making
validated gives us a higher level of confidence that the in Disassembly Process Based on Fuzzy Reasoning Petri
developer writing the software will have the correct Nets", IEEE Transactions on Systems, Man, and
requirements and offers a model to validate their code Cybernetics-Part B: Cybernetics, Vol. 34, No. 5. October

upon completion. 
200 4. pp 2029 -20 34

[5] Looney, C. G., "Fuzzy Petri nets for rule-based
6. CONCLUTION. decisionmaking", IEEE Transactions on Systems, Man and

For many years researchers have looked at applying Cybernetics, Vol. 18 Issue: I, Jan.-Feb. 1988, pp. 178 - 183
Petri nets to validate Rule Based Systems. More
recently the idea of fuzzy Petri nets emerged and have [6] Altenburg, K., J. Schlecht, and K. Nygard. "An Agent-

based Simulation for Modeling Intelligent Munitions," In
been used to validate fuzzy reasoning trees. The main broc. oflth on for MtelCont onition,

Proc. of the Second WSEAS Int. Conf. on Simulation,
intent of this exercise was to apply fuzzy reasoning Modeling and Optimization, Skiathos, Greece, 2002.
and Petri nets to UAV decisions. In a simple scenario,
it seems to be a viable option and it will be interesting [7] Lua, C., K. Altenburg, and K. Nygard. "Synchronized
to implement it on a larger scale. In our experience, Multi-Point Attack by Autonomous Reactive Vehicles with

using the fuzzy Petri net proved valuable in validating Simple Local Communication." In Proc. of the IEEE Swarm

our rules for completeness, preciseness, and Intelligence Symposium, Indianapolis, Indiana, 2003.

consistency as we took input values and traversed the [8] Joseph, J. S., K. Altenburg, B. Ahmed, and K. Nygard.
Petri net to came up with a final decision which we Decentralized Search by Unmanned Air Vehicles using
could determine as a reasonable or unreasonable Local Communication. In Proc. of the International
decision. Conference on Artificial Intelligence, Volume II, Las Vegas,

We also conclude that fuzzy Petri nets can be pp. 757-762, 2003.

implemented without changing the traditional Petri [9] Nazareth, D. L., "Investigating the Application of Petri
net's rules about conflict, consumption of tokens, arc Nets for Rule-Based System Verification," IEEE Trans.
enablement, and token placement. Know. Data Eng., Vol. 4, March 1993, pp4 02-4 15.

7. FUTURE WORK.
Implementation of the fuzzy reasoning will be done

in a simulation environment and its accuracy and
efficiency will be tested against other decision making
models (i.e. Bayesian Decision Analysis, Rough Set).
We are also interested in looking at the practicality and
feasibility of organizing fuzzy reasoning rules into a
hierarchy where the consequent of one rule may be the
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2 COOPERATIVE CONTROL & OPTIMIZATION

Abstract We present a procedure for controlling a team of Unmanned Air Vehi-
cles (UAVs) for establishing patrol patterns to protect an asset on the
ground. The control is decentralized and follows a reactive, behavior-
based, emergent intelligent swarm design. The patrol patterns consist
of flight tracks with different radii and altitudes around the asset. The
multiple tracks help maintain a persistent presence around the asset
for the purposes of surveillance and the destruction of hostile intruders.
Populating inner tracks is favored over outer tracks, and is accomplished
through behaviors that comprise a track switching protocol. Collision
avoidance is maintained. Global communication is assumed to be un-
available, and control is established only through passive sensors and
minimal short-range radio communication. The model is implemented
and successfully demonstrated in an agent-based, simulated urban envi-
ronment. The simulation establishes that the emergent, behavior-based
patrol procedure for UAVs is effective, robust, and scalable. The ap-
proach is especially well suited for numerous, small, inexpensive, and
expendable UAVs.

Keywords: swarm, emergent intelligence, decentralized control, patrol

1. Introduction

A bottom-up approach to decentralized control of Unmanned Air Ve-
hicles (UAVs) is investigated in this research. The purpose of the re-

search is to develop a model for emergent formation of UAVs into func-
tional teams that cooperatively complete a mission, such as coopera-
tively patrolling an asset of high interest and striking any moving or
static hostile intruders. Emergent team formation involves the creation
of teams without centralized control and based on individual decisions
and local information. Most previous UAV mission planning and co-
operative control employ global optimization techniques which assume
perfect (or near perfect) global communication and complete knowledge
sharing. Since reliable global communication in threatening situations
is not realistic, systems that rely on it are prone to failure. Other fail-
ures that adversely affect global optimization techniques include: loss
of global positioning, communication network saturation, lack of battle-
field intelligence, highly dynamic battlefield conditions, and the presence
of many UAVs within the operational environment [1]. Our simulation
shows that mission objectives can be accomplished if all agents follow
the same protocols even in the absence of inter-agent communication.
The philosophy guiding this research is that of emergent intelligence
and its emphasis on bottom-up, decentralized, and behavior-based con-
trol. We believe bottom-up approaches are more robust than globally
optimized approaches with respect to individual tasks in uncertain and
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dynamic environments. The emergent intelligence approach relies lit-
tle on a priori, situational knowledge or high-bandwidth, inter-agent
communication. Solutions derived from emergent intelligence are highly
adaptive in complex, dynamic, and uncertain environments and they of-
fer a flexibility not easily attained by rigid, globally optimized solutions
that assume perfect communication.

2. Simulation Framework

The research builds upon a previously developed agent-based frame-
work to simulate UAVs as virtual agents [2]. This framework is known
as ASAS - Autonomous Search and Attack System. By extending the

generic, object-oriented agent structure in the framework, we created
UAV agents with the intent of simulating the characteristics of small,
low cost, expendable UAVs. In an effort to obtain a reasonably high-
fidelity model, we assume that agents have limited capabilities. These
limitations extend to the UAV's computational processing power, mem-
ory, and communication capability. It is also assumed that a UAV's
sensors, actuators, and control systems are subject to noise and failures.

Individual UAV agents rely on local information obtained from its
sensors and process that information locally. An agent has little or no
dependence on another agent's state or presence. However, the agents
are opportunistic: if information about another agent is available, that
information may be used. Simple signal transmitters and sensors are
attached to the agents to allow for limited range, broadcast or directional
communication for opportunistic cooperation between agents. Signal
reception is often limited to an agent's nearest neighbor. Therefore, an
agent may be unaware that its cooperation with a close neighbor may
propagate and result in team formation; teams are an epiphenomena of
individual agent behavior.

Individual UAV agents are physically simulated with simple actua-
tors allowing for turning (a virtual, coordinated roll and bank), and

acceleration based on a simple, discrete set of velocities: slow, cruise,
and fast. These capabilities allow the agents to model the rudimentary
functionality of operational UAVs.

The control philosophy for the agents is based on task achieving mod-
ules with tight sensor-actuator coupling. Providing for the persistence
of behavior in the absence of a triggering sensation requires some state
information. The agents employ discrete states and may act differently
to similar sensations in different states.
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3. Asset Patrol Mission

Many situations may arise where it is deemed necessary to protect
vital assets in high threat environments. An example of this is in the
area of homeland security in which intelligence indicates that particular
assets could be at risk from terrorist attacks. Mission goals for protecting
such assets may include maintenance of a persistent presence around
the asset, surveillance, and destruction of hostile intruders. A UAV
is an ideal choice for carrying out this type of mission. A persistent
presence around the asset could be maintained by establishing flight
patrol patterns around the asset. Multiple UAVs in these patrol patterns
at any point in time would ensure complete surveillance coverage and
provide redundancy that would minimize the impact of individual UAV
failures in the overall mission objective.

4. Asset Patrol Algorithm

4.1. Patrol Structure

The patrol patterns consist of flight tracks with different radii and
altitudes around the asset. The multiple tracks help maintain a persis-
tent presence around the asset for the purposes of surveillance and the
destruction of hostile intruders. They also provide multiple viewpoints
for surveillance as well as multiple layers of protection. Populating inner
tracks is favored over outer tracks and is accomplished through behav-
iors that comprise a track switching protocol. Collisions in an urban
area, especially around the asset being protected, would be extremely
hazardous. Therefore, one of the main objectives of the protocols is that
of collision avoidance. The altitude of the patrol tracks is proportional
to the radius - lower tracks are smaller. Each patrol track consists of a
fixed number of waypoints that form a regular polygon with the asset
at its center.

4.2. UAV Sensor/Communication Capability

Global communication is assumed to be unavailable, and control is
established only through passive sensors and minimal, short-range radio
communication. One of the main objectives in the design philosophy is
to determine what can be accomplished with minimal inter-agent com-
munication. The motivation for this is to build systems that are highly
robust. Systems that do not rely on capabilities that are prone to fail-
ure, such as global communication, are inherently more robust. Greater
communication capabilities may be considered later to increase perfor-
mance. The advantage of our design philosophy is that if these added
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communication capabilities fail, the system will still function reliably
because it was designed to work without them.

4.3. UAV Behaviors

The high level objective of asset patrol is accomplished (emerges) from
the more local UAV behaviors of collision avoidance, patrolling, and
attacking. The collision avoidance and attacking behaviors are similar
to those used in the sweep search described in [1]. The focus here is on
the patrolling behavior.

The high-level control structure is illustrated in the state chart of Fig-
ure 1.1. The control is hierarchical, with the Choose module of Figure 1.1
being a high-level construct charged with identifying which lower-level
state chart should appropriately be in control in the current situation.
The current situation is assessed at regular time intervals by the Choose
module. At each cycle, sensory input is processed to determine the best
choice of action. Figure 1.2 illustrates an expansion of the Patrol Asset
module into its lower-level state chart consisting of the behaviors enter
patrol, patrol, seek gap, and exit patrol.

tr " " CopIt

Choe 1: Out of Fuel OR

5: Patrol Site

Figure 1.1: Hierarchical State charts of UAV behavior.
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Start Jump WP and
Pr < Jump Threshold WP/ Set WP

Patrol Site Boundary/ W•

( Set Entry W P Enr WP

eatrol WP/ 
Gap Detected/

Jump WP and Set Patrol AltitudeSPr >= Jump Threshold/
Go to Jump) Track

Patrol Site Boundary/ WP/Set WP["
•Set Entry W P

End W P..I

Figure 1.2: Detailed state charts of UAV patrol asset behavior.

4.4. Enter Patrol Behavior

The enter patrol behavior is executed when the UAV is attempting to
enter the outermost patrol track. When the UAV reaches a particular
distance from the asset, it maneuvers to orient itself in the direction of
patrol flight. This patrol direction is known in advance and is either
clockwise or counterclockwise. Once the UAV is oriented in the patrol
direction, it calculates which of the pre-specified entry points of the outer
track is the closest to its current heading. If the UAV doesn't encounter
any obstacles, such as other UAVs, on its way to the entry point, it will
enter the outer patrol track. If another UAV is encountered, it will fly
away from the asset for some distance before repeating the enter patrol
behavior. The behavior of flying away from the asset when encountering
other UAVs in close proximity provides congestion control for the outer
track.

4.5. Patrol Behavior

The patrol behavior consists of orbiting around the asset in the current
track by flying from waypoint to waypoint while scanning for possible
intruders. UAVs maintain cruise speed while in a patrol track. While
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patrolling in an outer track, a UAV use a probability calculation to
decide wether to attempt to switch to the next inner track. This decision
is always made at a pre-specified waypoint. Limiting track switching
attempts to a pre-specified point minimizes potential collisions.

4.6. Track Switching Protocol

The decision to switch tracks is based on the UAV's perception of
congestion of the target track. If a UAV tries unsuccessfully to switch
to a particular track, it will remember this and lower its probability of
trying the next time. Initially, the UAVs attempt track switches with
100% probability. A track switch attempt consists of three steps, as
depicted in Figure 1.3: 1) Jump from patrol track to jump track at the
pre-specified waypoint, 2) Jump from jump track to patrol track if a
gap is detected, and 3) Start over if a gap is not detected before the
pre-specified exit point is reached.

S. .. .. .... ,Jum p Track

SPatrol Track

Figure 1.3: Track switch protocol.

The jump track for a particular patrol track is the same radius as the
desired patrol track but at an altitude that is half way between the two
tracks involved in the switch. Once the UAV enters the jump track at
the pre-specified point, it executes the gap seeking behavior.

4.7. Gap Seeking Behavior

After entering the jump track, the UAV accelerates to fast speed and
begins looking for a point where it can fit in the desired patrol track .
This activity is known as the gap seeking behavior. The point that the
UAV seeks is such that a minimum separation distance between UAVs
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is maintained. It is assumed that the UAV has only forward scanning
visual sensors. A UAV in the jump track uses a timer to determine if
there is enough room behind it in the target patrol track. This timer
is set to zero when the UAV first enters the jump track. Each time the
jump UAV observes a patrol UAV directly below it, the timer is reset to
zero. Given the difference in speed of UAVs in the jump track and UAVs
in the patrol track, the jump UAV determines that there is enough room
behind when the timer reaches a certain value. If the timer reaches this
value, the jump UAV simply scans to see if there is enough room ahead
as well. If so, the UAV has found a gap. The timer reset is illustrated
in Figure 1.4. The gap calculation is illustrated in Figure 1.5.

Enter jump track

--- - -- -- - - -- ----- -- - - - - - - -- -- - -
Gap Detected UAV Detected -

Reset timer

minGapDist/2 rninGapDistl2

Figure 1.4: Gap detection.

t(Vfast - Vcruise) > minGapDist (1)
2

SAl -- minGapDist
ty ast =2 (2)

Vfast -Vcruise

If the UAV doesn't find a gap large enough before it reaches the exit
point, it will exit the patrol area by executing the exit patrol behavior.
The entry and exit points of the jump track are such that a UAV is in
the jump track slightly less than one complete orbit. This restriction
eliminates possible collisions in the jump track.
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Cruise speed

Jump Track
Fast speed Patrol Track

, - , -+ minGapDist Cruise speed

Figure 1.5: Gap timer calculation.

4.8. Exit Patrol Behavior

The purpose of the exit patrol behavior is to exit the patrol area
after a failed track switch to avoid collisions with other patrolling UAVs.
Starting at the exit point of the jump track, the UAV flies away from the
asset until it is well beyond the outer most patrol track. Until it reaches
this point, it maintains the altitude of the jump track it just exited since
no other patrolling UAVs are at this altitude. It then begins climbing
to the altitude of the outer most patrol track. Then the enter patrol
behavior is invoked. The exit patrol behavior may also be used when
UAVs are low on fuel and need to return to base.

5. Experimental Results and Observations

The system has been tested under varying experimental conditions
which include: varying number of UAVs, varying number of threats, and
differing track shapes. Threat density was varied from none, low, and
high with 0, 5 to 10, and 10 to 15 threats respectively. The experimental
results with varying numbers of UAVs and threats using hexagonal tracks
are shown in Table 1.1, and the view of the patrolling system is shown
in Figures 1.6 and 1.7.

As the shapes of the tracks increase from hexagon to octagon and
16-gon, there were fewer evasive action maneuvers required when at-
tempting to enter the outer track. This is due to the increased number
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Figure 1.6: View of patrolling simulation, entering patrol.

ili

Figure 1.7: View of patrolling simulation, patrolling.
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Table 1.1: System performance under varying conditions using

hexagonal tracks.
Shape of Number Threat System performance
track of UAVs density

None 4 to 5 UAVs populate the inner most track
1-5

Low UAVs strike threats before tracks are pop-
ulated

High (Same as above)
Hexagon None UAVs populate inner two tracks, no evasive

16 action required
Low UAVs populate inner two tracks, most

threats destroyed, no evasive action re-
quired

High UAVs populate inner most track, most

threats destroyed, no evasive action re-
quired

None UAVs populate all the three tracks, evasive
32 action required

Low UAVs populate all tracks, most threats de-
stroyed, evasive action required

High (Same as above)
None UAVs populate all tracks, evasive action re-

> 32 quired, collisions occurred
Low UAVs populate all tracks, most threats de-

stroyed, evasive action required, collisions
occurred

High UAVs populate all tracks, most threats de-

stroyed, evasive action required

of entry points making it less likely that two UAVs would seek the same
entry point simultaneously. With 32-gon tracks, there were more eva-
sive action maneuvers required when attempting to enter the outer track.
This is due to the entry points being too close together. The system be-
comes unstable due to cascading evasive action maneuvers when more
than 32 UAVs are in the patrol area.

6. Conclusions and future works

The asset patrol and protection model is implemented and successfully
demonstrated in an agent-based, simulated urban environment. The
simulation establishes that the emergent, behavior-based patrol proce-
dure for UAVs is effective, robust, and scalable. The approach is es-
pecially well suited for numerous, small, inexpensive, and expendable
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UAVs. The use of virtual beacons (waypoints), signal-based commu-
nication, and simple rules provide a robust and effective method for
cooperative control among n UAVs to patrol an asset. The model pre-
sented demonstrates that neither high-level control nor high-bandwidth
communication is necessary for this complex cooperative control task.
The simulation shows that communication is not necessary if all the
agents follow the prescribed protocols.

There are several areas that are being explored to expand and extend
our current multi-agent model. High level decision layers, based on a
Partially Observable Markov Decision Process (POMDP) and a Bayesian
Network, are under development to function on the top of the reactive
behavior-based agent control. This would allow agents to function more
intelligently if more global information is available. In the absence of
this global information, agents can fall back on the reactive behavior-
based control. The agents may be augmented with a greater behavioral
repertoire allowing them to perform a variety of tactics as well as other
coordinated movements.
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Abstract
The Partially Observable Markov Decision Process 2 Related Work

(POMDP) model is explored for high level decision POMDP modeling has been used in various areas,
making for Unmanned Air Vehicles (UAVs). The type of such as machine maintenance, medical diagnosis,
UAV modeled is a flying munition with a limited fuel autonomous robots, and many others. POMDP is used for
supply. The UAV is destroyed when it strikes a target. autonomous office navigation [3] enabling a robot to
When a UAV detects a target, a decision has to be made utilize all its sensor information, for hallway robot
whether to continue to search for a better target or strike navigation problem [4] using function-approximation
the current target immediately. Many factors influence methods for representing the value functions. POMDP
this decision, including target value, target density, threat also proves its robustness in modeling problems like
levels, and fuel level. POMDP is a suitable model for this searching for a moving target [5]. The Linear
battle field situation because of uncertainties due to the Programming and POMDP marriage technique [6] is used
stochastic nature of the problem and the imperfect sensors for solving large-scale allocation problems with partially
of the UAV. Two POMDP models are presented in this observable states and constrained action and observation
paper. One uses planning horizon to model the fuel level, resources. The POMDP framework is also used in
while the other models the fuel level explicitly in the medical applications, such as the management of ischemic
states. heart disease [8].

1 Introduction 3 POMDP Model

The POMDP models proposed in this paper POMDP extends the Markov Decision Process
addresses the Search vs. Strike scenario. The scenario (MDP) model [1] by allowing partial observability of the
consists of a swarm of unmanned air vehicles (UAVs) system state. The POMDP model is defined by a 6-tuple
that search a given area for specified targets to destroy (S, A, Z, T, R, 0). For any system, it defines a finite set of
[1]. Given a rectangular search area, the swarm of UAVs states of the system, S; a finite set of actions, A; transition
flies in a parallel formation in such a way as to ensure function, T(s's,a) = P(sls,a), probability of transitioning
complete coverage of the search area. The UAVs use from one state s to another state s' after taking an action a
radar-type sensors to scan for potential targets. The in state s; rewards, R(s,a), for taking an action a in state s;
UAVs make as many passes across the search area as a finite set of observations, Z; observation function,
needed until the entire area is searched. Each UAV 0(s,a,z) = P(zls,a), probability of getting observation z
maintains its own private list of detected targets. Once a given the resulting state s and action a taken in previous
target is detected, a Search vs. Strike decision must be state. It may also consist of the horizon length h, the
made. In the real battle field, the sensor information isnois an imerfct.POMP epliitl moelsthe discount factory7, and the initial belief state. Belief state is
noisyandimperfecti o. Fl lvexplicis y an mport fctor the probability distribution over the states, which is keptim perfect inform nation . Fuel level is an im portant factorto a c s t e cu r n sy e m t t .In a P M od lthe A~s.Withthe to access the current system state. In a POMDP model,
that influences the behavior of tthe belief state has to be updated from the previous belieflimited fuel, the UAV must accomplish its mission. Ahighted fuel, leel make ms taccomplish its morei. ah AV tstate. Hence, the process of maintaining the belief state ishigh fuel level m akes it m ore attractive for the UAV to ak va .T i me n th t he P M od l c n bMarkovian. This means that the POMDP model can be
search for a better target, while low fuel level makes it seen as a continuous space MDP as the belief space is
more attractive to strike the best target found. There are continuous. The recursive value iteration algorithm for the
two POMDP models presented in this paper. One uses MDP model can be used to solve the continuous space
planning horizon to model the fuel level, while the other MDP to find the optimal policy after a little adaptation.
models the fuel level explicitly in the states. More detailed description of the POMDP model can be

found in [6].



4 POMDP Modeling of UAV for Search vs. 4.1.1 Probability Definitions for the Model
Strike Decision Assume each type (value) of target is equally likely to be

The first step in constructing a POMDP model of UAV found in each grid square. Also assume the value of a
activity is to divide the search area into a grid. A UAV discovered target decreases by I for each time step.
searches one grid element at each time step. The goal is to Threats of a given level are also equally likely to be
destroy the highest valued target. Once at least one target encountered in each grid square. In this model, we
is discovered, a decision must be made at each successive assume that the threat level doesn't decay.
grid element of whether to continue to search or to strike
the highest value target found thus far. Assume also that Define p VTj (0 = i = m, 0 =j = n) to be the probability of
the targets degrade in value according to the time elapsed target of value i being highest and threatj being highest in
since their discovery. Furthermore, threats may be a particular grid square. These are mutually exclusive and
encountered which may destroy the UAV. The tradeoffs they sum to I. pKj is the probability of UAV being
of the search vs. strike decision are illustrated in the destroyed by threatj for each time step.
following example. Suppose a medium value target is
found early on in the mission. The UAV may decide to 4.1.2 State Transitions
forgo the certain reward of striking immediately, in hopes Equations (1) to (5) describe the transition probabilities of
of finding a higher value target. The risk associated with the model.
making this decision is that the UAV may subsequently
only find targets of low value. Also, in the time it took to P(D V T Strike) = 1 (1)
search for better targets, the medium value target has i
degraded to a low value target. Thus, the continue to P(D ViT o,Search) = 0 (2)
search decision cost the UAV the difference between a
medium and low value target. However, if the UAV had P(VkTI I VjT 0 ,Search) = ZpVmT, (3)
subsequently found and then struck a higher value target, valid m,n
the decision would have paid off. Another risk associated P(D I VTJ Search) = pKj (4)
with the continue to search decision is that the UAV may
be destroyed by the enemy before it can destroy a target. P(Vk T1 I VTJ,Search) =(1 - pKj ) E p V.T T,

valid m,n

4.1 POMDP Formulation (5)
The set of states is:
S = {ViTj, DI O=im, Oz=n} For example, assuming m = 4, and n = 1, the probability
Where, of transitioning from state V3T, to state V2T, is given by

V.: current highest value target (pVo TO + pVITo + pV 2To + pVoTI + pVTI + pV 2T1) *(J -
Tj: current highest threat level pKi). The term pV3 T, is not valid because the new state
D: absorbing state would have the highest value of 3 instead of 2.
m, n: number of distinct target and threat values

respectively
4.1.3 Observation Probabilities

The highest value may reflect either a newly discovered If sensors give perfect observations, Equation (6) and (7)
target, or one of time degraded value. We are assuming describe the observation probabilities.
that the target value degrades by one for each time step.
The state D is an absorbing state corresponding to striking P(D I D, Strike) = 1
a target, or being shot down by enemy threat. The set of (6)
actions is:
A = (Strike, Search] P1, ifi = k,j = I
The Strike action means striking the highest value target P(VT0 I Vk TISearch) =
found thus far. The Search action means searching the i9' otherwise

next grid element. (7-1)
For imperfect observation,

The set of observations is: P(V1•TJ Vk TI,,Search) = p, 0 <p < 1
0 = {ViTj, DI 04=m, =O=n} (7-2)
Where,

Vj: current highest value target
Tj: current highest threat level

The observations correspond directly to the states.
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Figure 1. Optimal policy

The ViTj probabilities are easily calculated from the
4.1.4 Reward Function above probabilities assuming independence of targets and

The reward function is such that no immediate reward is threats.
given for the Search action. For the Strike action, a Probability of being shot down per time step from threat
reward is given that corresponds to the target value of the level (0-4): 0.0, 0.16, 0.2, 0.25, 0.33
current state. Equation (8) and (9) describe the reward
function. Figure 4.1 shows the optimal policy for the given input

R(Vi , Sarch = 0values. Subscript notation can include ranges and
hwildcards. The subscript values indicate the observation

(8) of target value (V) and threat level (T).

(9) 5 POMDP Model with Fuel State Information

4.1.5 Results Based on the previous model, fuel level is introduced in
We ued OMD soverwriten y Athoy Cssadra this model. The system state is described by the

We used POMDP solver written by Anthony Cassandra combination of the target value, threat level, and fuel[????] to solve our POMDP formulations. The exact level. The state describes two aspects of the environment:

solver produces output files corresponding to the value evel (tate de , threct oeve envin men t:

function and policy graph of the solution. After external (target value, threat level) and internal (fuel

experimentation with several data sets modeling imperfect level).

sensors, it was discovered that the exact solver could not The POMDP model is described as follow:
produce solutions in a reasonable amount of time. (1) action :strike, search
Therefore, we present results for the model that assumes (2) states:
perfect sensors. This reduces the POMDP problem to an S = {ViTIFk, DJ O=i=m, O=j=n, l=k=-qJ
MDP. Since modeling imperfect sensors is of high Where,
interest, future work will involve the use of heuristic Vi: current highest value target
POMDP solvers. Tj: current highest threat level
The use of the model is demonstrated with an example. Fk: current fuel level
The targets and threats are modeled with the following D: absorbing state
probabilities for a grid square: m, n, q: number of distinct target, threat and fuel
Probability of target values (0-4) being highest: 0.37, values respectively
0.19, 0.17, 0.15, 0.12 (3) observation: ViTjFk
Probability of threat levels (0-4) being highest: 0.95, 0.02, (4) transition function: the only legal transition for fuel

0.02, 0.005, 0.005 level is transfer to one level lower state or stay in the

same fuel level state.
(5) observation function:



P(VTFk I V, T.,F. ,Search) = p, 0 < p < 1 to improve the best possible offline policy heuristically. A
good general purpose heuristic solution is yet to be

(10) discovered. One main limitation in using POMDP model

is that accurate information required by the POMDP
The policy graph shown in Figure 5.1 describes the action model may not be readily available.
taken by the UAV based on different observations. For
this example, there are 2x2x2 = 8 possible observations. References
From the figure we see that the UAV continues searching [1] Joseph Schlecht, Karl Altenburg, Benzir Md Ahmed,
if the fuel level is high or the target value is low. The Kendall E. Nygard, Decentralized Search by Unmanned
UAV will strike if the target value is high and the fuel Air Vehicles using Local Communication
level is low. Assignment of reward values and target
values are arbitrary in our work. In practice, the [2] Howard, R. A. 1960. Dynamic Programming and
assignment would reflect the professional judgment of Markov Processes. MIT Press.
some military officer. The improvement of this model is
that fuel level is explicitly described, which is an [3] Simmons, R., and Koenig, S. 1995. Probabilistic
important feature that reflects the short life of UAV. navigation in partially observable environments.

Fourteenth International Joint Conference on Artificial
VoT*F1  Intelligence, 1080--1087. Montreal, Canada: Morgan
VT.F2  Kaufmann.

Search [4] Cassandra, A.; Kaelbling, L.; and Kurien, J. 1996.
Acting under uncertainty: Discrete bayesian models for
mobile-robot navigation. Proceedings of IEEE/RSJ
International Conference on Intelligent Robots and

t V1T.F, Systems.

[5] Eagle, J.N., The Optimal Search for a Moving Target
When the Search Path is Constrained, Operations
Research, Vol. 32, No. 5, September-October 1984, pp.

Strike 1107-1115.

[6] Yost, K. and Washburn, A.R., The LP/POMDP

Figure 2. Optimal policy for explicit fuel level Marriage: Optimization with Imperfect Information,
Naval Research Logistics, Vol. 47, No. 8, 2000, pp. 607-

6 Conclusions and Future Work 619.

The POMDP model is explored for high level decision [7] Cassandra, A. R. 1998. Exact and Approximate
making for Unmanned Air Vehicles (UAVs). Reasonable Algorithms for Partially Observable Markov Decision
policies for strike vs search are obtained by the POMDP Processes. Ph.D. Dissertation, Department of Computer
model. In general, the POMDP model is not scalable. Science, Brown University.
Solutions for all but small problems are intractable. Only
problems with very few states and actions can be solved [8] M. Hauskrecht. Dynamic decision making in
exactly. However, a good heuristic is needed to solve stochastic partially observable medical domains: ischemic
POMDP model for problems of moderate size in heart disease example, Proceedings of AI in Medicine
reasonable time. Heuristic methods for POMDP is an area Europe (AIME), Grenoble, France, pp. 296-299, 1997.
of active research

For the scalability problem, to get a policy online fast, [http://www.cs.brown.edu/research/ai/pomdp/]

building a policy library off-line may be a feasible [9] Wolfgang Grather 1994. Computing Distances
solution. The UAV can easily and quickly find the between attribute-value reorientations in an associative
suitable policy searching existing policies based on the memory. Similarity Cocepts and Retrieval Methods,
current situation. Case based reasoning techniques, such volume 13 of Fabel-Report, pages 12-25. GMD, Sankt
as RABIT (Retrieval with Attribute Based Indexing Augustin, 1994.
Technique) [9-10], can be used in tracing the policy. The
problem with the offline solution is, policy library may [10] Bemd Linowski. RABIT: Ein objektorientiertes
not completely reflect all real battle field situations. A System zum Retrieval attrbutbasierter falle. Febel-Report
better solution may be to use newly acquired information 34, GND, Sankt Augustin, June 1995, 162 pages.


